Unisolvency for multivariate polynomial interpolation in Coatmèlec configurations of nodes

نویسندگان

  • Miguel A. García-March
  • Fernando Giménez
  • Francisco R. Villatoro
  • Jezabel Pérez
  • Pedro Fernández de Córdoba
چکیده

A new and straightforward proof of the unisolvability of the problem of multivariate polynomial interpolation based on Coatmèlec configurations of nodes, a class of properly posed set of nodes defined by hyperplanes, is presented. The proof generalizes a previous one for the bivariate case and is based on a recursive reduction of the problem to simpler ones following the so-called Radon-Bézout process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of bivariate configurations with simple

In 1977 Chung and Yao introduced a geometric characterization in multivariate interpolation in order to identify distributions of points such that the Lagrange functions are products of real polynomials of first degree. We discuss and describe completely all these configurations up to degree 4 in the bivariate case. The number of lines containing more nodes than the degree is used for classifyi...

متن کامل

Approximating optimal point configurations for multivariate polynomial interpolation

Efficient and effective algorithms are designed to compute the coordinates of nearly optimal points for multivariate polynomial interpolation on a general geometry. “Nearly optimal” refers to the property that the set of points has a Lebesgue constant near to the minimal Lebesgue constant with respect to multivariate polynomial interpolation on a finite region. The proposed algorithms range fro...

متن کامل

Multivariate polynomial interpolation on Lissajous-Chebyshev nodes

In this contribution, we study multivariate polynomial interpolation and quadrature rules on non-tensor product node sets linked to Lissajous curves and Chebyshev varieties. After classifying multivariate Lissajous curves and the interpolation nodes related to these curves, we derive a discrete orthogonality structure on these node sets. Using this discrete orthogonality structure, we can deriv...

متن کامل

MEAN VALUE INTERPOLATION ON SPHERES

In this paper we consider   multivariate Lagrange mean-value interpolation problem, where interpolation parameters are integrals over spheres. We have   concentric spheres. Indeed, we consider the problem in three variables when it is not correct.  

متن کامل

A novel technique for a class of singular boundary value problems

In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 217  شماره 

صفحات  -

تاریخ انتشار 2011